Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Infect Dis ; 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-2324022

ABSTRACT

BACKGROUND: The development of memory B cells after asymptomatic SARS-CoV-2 infection is not well understood. METHODS: We compared Spike antibody titers, pseudovirus neutralizing antibody titers, and memory B cell responses among SARS-CoV-2 PCR positive Marine recruits who either reported asymptomatic or symptomatic infection. RESULTS: 36 asymptomatic participants exhibited similar Spike IgG titers, Spike IgA titers, and pseudovirus neutralization titers compared to 30 symptomatic participants. Pseudovirus neutralization and Spike IgG titers showed significant positive correlations with frequency of memory B cells. CONCLUSIONS: Among young adults, asymptomatic SARS-CoV-2 infection induced antibody and memory B cell responses comparable to mild symptomatic infection.

2.
Cell reports methods ; 3(2), 2023.
Article in English | EuropePMC | ID: covidwho-2288727

ABSTRACT

Summary Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection. Graphical abstract Highlights • We present a computational framework for alternative splicing (AS) diagnostic markers• Our AS biomarkers outperform gene-expression biomarkers in COVID-19 detection• Microfluidic PCR diagnostic assay of AS biomarkers achieves greater than 98% accuracy• We interpret the biological importance of identified AS biomarkers Motivation Host-based response assays (HRAs) can often diagnose infectious disease earlier and more precisely than pathogen-based tests. However, the role of RNA alternative splicing (AS) in HRAs remains unexplored, as existing HRAs are restricted to gene expression signatures. We report a computational framework for the identification, optimization, and evaluation of blood AS-based diagnostic assay development for infectious disease. Using SARS-CoV-2 infection as a case study, we demonstrate the improved accuracy of AS biomarkers for COVID-19 diagnosis when compared against six reported transcriptome signatures and when implemented as a microfluidic PCR diagnostic assay. Host-based response assays can diagnose infectious disease earlier and more precisely than pathogen-based tests. However, the role of RNA alternative splicing (AS) remains unexplored. Zhang et al. present a computational framework for AS diagnostic biomarkers. Using SARS-CoV-2 as a case study, they demonstrate the improved accuracy of AS biomarkers for COVID-19 diagnosis.

3.
Mol Syst Biol ; 19(5): e11361, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2270759

ABSTRACT

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.


Subject(s)
COVID-19 , Young Adult , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Prospective Studies , DNA Methylation/genetics , Protein Processing, Post-Translational
4.
Cell Rep Methods ; 3(2): 100395, 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2237560

ABSTRACT

Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.

5.
Epidemiology ; 33(6): 797-807, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2190880

ABSTRACT

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Subject(s)
COVID-19 , Disease Outbreaks , Military Personnel , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Female , Humans , Male , Military Personnel/statistics & numerical data , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , United States/epidemiology
6.
Microbiol Spectr ; : e0183722, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2117965

ABSTRACT

We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.

7.
Cell Syst ; 13(11): 924-931.e4, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2095148

ABSTRACT

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
COVID-19 , Immunity, Innate , Sex Characteristics , Female , Humans , Male , Young Adult , COVID-19/immunology , Interferons , Proteomics , SARS-CoV-2
8.
iScience ; 25(10): 105202, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2041844

ABSTRACT

The ongoing evolution of SARS-CoV-2 requires monitoring the capability of immune responses to cross-recognize Variants of Concern (VOC). In this cross-sectional study, we examined serological and cell-mediated immune memory to SARS-CoV-2 variants, including Omicron, among a cohort of 18-21-year-old Marines with a history of either asymptomatic or mild SARS-CoV-2 infection 6 to 14 months earlier. Among the 210 participants in the study, 169 were unvaccinated while 41 received 2 doses of mRNA-based COVID-19 vaccines. Vaccination of previously infected participants strongly boosted neutralizing and binding activity and memory B and T cell responses including the recognition of Omicron, compared to infected but unvaccinated participants. Additionally, no measurable differences were observed in immune memory in healthy young adults with previous symptomatic or asymptomatic infections, for ancestral or variant strains. These results provide mechanistic immunological insights into population-based differences observed in immunity against Omicron and other variants among individuals with different clinical histories.

9.
AJPM Focus ; 1(1): 100003, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1882002

ABSTRACT

Introduction: Quarantining is commonly used to mitigate the spread of SARS-CoV-2. However, questions remain regarding what specific interventions are most effective. Methods: After a 2-week home quarantine, U.S. Marine Corps recruits underwent a supervised 2-week quarantine at a hotel from August 11 to September 21, 2020. All recruits were assessed for symptoms through oral questioning and had their temperatures checked daily. Study participants answered a written clinical questionnaire and were tested for SARS-CoV-2 by polymerase chain reaction shortly after arrival in quarantine and on Days 7 and 14. The results were compared with those of a previously reported Marine-supervised quarantine at a college campus from May until July 2020 utilizing the same study, laboratory, and statistical procedures. Results: A total of 1,401 of 1,514 eligible recruits (92.5%) enrolled in the study, 93.1% of whom were male. At the time of enrollment, 12 of 1,401 (0.9%) participants were polymerase chain reaction positive for SARS-CoV-2, 9 of 1,376 (0.7%) were positive on Day 7, and 1 of 1,358 (0.1%) was positive on Day 14. Only 12 of 22 (54.5%) participants endorsed any symptoms on a study questionnaire, and none of the participants had an elevated temperature or endorsed symptoms during daily screening for SARS-CoV-2. Participation rate (92%) was much greater than the approximately 58.8% (1,848 of 3,143) rate observed in the previous Marine-supervised college campus quarantine, suggesting the changing attitudes of recruits during the pandemic (p<0.001). Approximately 1% of participants were quantitative polymerase chain reaction positive after self-quarantine in both studies. Conclusions: Key findings include the shifting attitudes of young adults during the pandemic, the limitations of self-quarantine, and the ineffectiveness of daily temperature and symptom screening to identify SARS-CoV-2‒positive recruits.

10.
Front Immunol ; 13: 821730, 2022.
Article in English | MEDLINE | ID: covidwho-1817940

ABSTRACT

Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-ß, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.


Subject(s)
COVID-19 , Fibroblast Growth Factors , Humans , Interleukin-17 , Matrix Metalloproteinase 10 , Proteomics , SARS-CoV-2
11.
PLoS One ; 17(4): e0266691, 2022.
Article in English | MEDLINE | ID: covidwho-1779779

ABSTRACT

SARS-CoV-2 T cell responses are associated with COVID-19 recovery, and Class I- and Class II-restricted epitopes have been identified in the spike (S), nucleocapsid (N) and membrane (M) proteins and others. This prospective COVID-19 Health Action Response for Marines (CHARM) study enabled assessment of T cell responses against S, N and M proteins in symptomatic and asymptomatic SARS-CoV-2 infected participants. At enrollment all participants were negative by qPCR; follow-up occurred biweekly and bimonthly for the next 6 weeks. Study participants who tested positive by qPCR SARS-CoV-2 test were enrolled in an immune response sub-study. FluoroSpot interferon-gamma (IFN-γ) and IL2 responses following qPCR-confirmed infection at enrollment (day 0), day 7 and 14 and more than 28 days later were measured using pools of 17mer peptides covering S, N, and M proteins, or CD4+CD8 peptide pools containing predicted epitopes from multiple SARS-CoV-2 antigens. Among 124 asymptomatic and 105 symptomatic participants, SARS-CoV-2 infection generated IFN-γ responses to the S, N and M proteins that persisted longer in asymptomatic cases. IFN-γ responses were significantly (p = 0.001) more frequent to the N pool (51.4%) than the M pool (18.9%) among asymptomatic but not symptomatic subjects. Asymptomatic IFN-γ responders to the CD4+CD8 pool responded more frequently to the S pool (55.6%) and N pool (57.1%), than the M pool (7.1%), but not symptomatic participants. The frequencies of IFN-γ responses to the S and N+M pools peaked 7 days after the positive qPCR test among asymptomatic (S pool: 22.2%; N+M pool: 28.7%) and symptomatic (S pool: 15.3%; N+M pool 21.9%) participants and dropped by >28 days. Magnitudes of post-infection IFN-γ and IL2 responses to the N+M pool were significantly correlated with IFN-γ and IL2 responses to the N and M pools. These data further support the central role of Th1-biased cell mediated immunity IFN-γ and IL2 responses, particularly to the N protein, in controlling COVID-19 symptoms, and justify T cell-based COVID-19 vaccines that include the N and S proteins.


Subject(s)
COVID-19 , Interferon-gamma , Interleukin-2 , Antibodies, Viral , Asymptomatic Infections , CD8-Positive T-Lymphocytes , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Vaccines , Epitopes , Humans , Interferon-gamma/immunology , Interleukin-2/immunology , Military Personnel , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
Pathogens ; 10(12)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554894

ABSTRACT

We used epidemiologic and viral genetic information to identify a case of likely reinfection in an otherwise healthy, young Marine recruit enrolled in the prospective, longitudinal COVID-19 Health Action Response for Marines (CHARM) study, and we paired these findings with serological studies. This participant had a positive RT-PCR to SARS-CoV-2 upon routine sampling on study day 7, although he was asymptomatic at that time. He cleared the infection within seven days. On study day 46, he had developed symptoms consistent with COVID-19 and tested positive by RT-PCR for SARS-CoV-2 again. Viral whole genome sequencing was conducted from nares swabs at multiple time points. The day 7 sample was determined to be lineage B.1.340, whereas both the day 46 and day 49 samples were B.1.1. The first positive result for anti-SARS-CoV-2 IgM serology was collected on day 49 and for IgG on day 91. This case appears most consistent with a reinfection event. Our investigation into this case is unique in that we compared sequence data from more than just paired specimens, and we also assayed for immune response after both the initial infection and the later reinfection. These data demonstrate that individuals who have experienced an infection with SARS-CoV-2 may fail to generate effective or long-lasting immunity, similar to endemic human beta coronaviruses.

13.
Emerg Infect Dis ; 27(4): 1188-1192, 2021 04.
Article in English | MEDLINE | ID: covidwho-1059926

ABSTRACT

In a study of US Marine recruits, seroprevalence of severe acute respiratory syndrome coronavirus 2 IgG was 9.0%. Hispanic and non-Hispanic Black participants and participants from states affected earlier in the pandemic had higher seropositivity rates. These results suggest the need for targeted public health strategies among young adults at increased risk for infection.


Subject(s)
COVID-19 , Military Health , Military Personnel/statistics & numerical data , Personnel Selection , SARS-CoV-2 , Age Factors , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Cross-Sectional Studies , Demography , Female , Humans , Male , Military Health/ethnology , Military Health/statistics & numerical data , Military Health Services , Personnel Selection/methods , Personnel Selection/statistics & numerical data , Quarantine , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL